连铸基础知识及提高连铸坯质量措施(二)
8.提高连铸坯表面质量有哪些措施? 铸坯表面缺陷主要是指夹渣、裂纹等。如表面缺陷严重。在热加工之前必须进行精整,否则会影响金属收得率和成本。生产表面无缺陷铸坯是热送热装的前提条件。 铸坯表面缺陷形状各异,形成原因是复杂的。从总体上说,铸坯表面缺陷主要受结晶器钢水凝固过程的控制。为保证表面质量,在操作上必须注意以下几点: (1)结晶器液面的稳定性:钢液面波动会引起坯壳生长的不均匀,渣子也会被卷入坯壳。试验指出:液面波动与铸坯皮下夹渣深度的关系如下: 液面波动范围,mm 皮下夹渣深度,mm ±20<2±40 <4 >40<7 当皮下夹渣深度<2mm,铸坯在加热时可消除,夹渣深度在2~5㎜时铸坯必须进行表面清理。钢液面波动在±10mm,可消除皮下夹渣。因此,选择灵敏可靠的液面控制系统,保证液面波动在允许范围内,是非常重要的。 (2)结晶器振动:铸坯表面薄弱点是弯月面坯壳形成的“振动痕迹”。振痕对表面质量的危害是:①振痕波谷处是横裂纹的发源地,②波谷处是气泡、渣粒聚集区。为此,采用高频率小振幅的结晶器振动机构,可以减少振痕深度。 (3)初生坯壳的均匀性:结晶器弯月面初生坯壳不均匀会导致铸坯产生纵裂和凹陷,以致造成拉漏。坯壳生长的均匀性决定于钢成分、结晶器冷却、钢液面稳定性和保护渣润滑性能。 (4)结晶器钢液流动:结晶器由注流引起的强制流动,不应把液面上的渣子卷入内部。浸入式水口插入深度小于50mm,液面上渣粉会卷入凝固壳,形成皮下夹渣;浸入式水口插入深度>170mm,皮下夹渣也会增多。因此,浸入水口插入深度和出口倾角是非常重要的参数。 (5)保护渣性能:应有良好的吸收夹杂物能力和渣膜润滑能力。
9.提高连铸坯内部质量应采取哪些措施? 铸坯内部质量是指低倍结构、成分偏析、中心疏松、中心偏析和裂纹等。铸坯经过热加工后,有的缺陷可以消失、有的变形、有的则原封不动的保留下来,对产品性能带来不同程度的危害。 铸坯内部缺陷的产生,涉及到铸坯凝固传热、传质和应力的作用,生成机理是极其复杂的。但总的来说,铸坯内部缺陷是受二次冷却区铸坯凝固过程控制的。改善铸坯内部质量的措施有: (1)控制铸坯结构:首要的是要扩大铸坯中心等轴晶区,抑制柱状晶生长。这样可减轻中心偏析和中心疏松。为此采用钢水低过热度浇注、电磁搅拌等技术都是有效的扩大等轴晶区的办法。 (2)合理的二次冷却制度:在二次冷却区铸坯表面温度分布均匀,在矫直点表面温度大于900℃,尽可能不带液芯矫直。为此采用计算机控制二次冷却水量分布、气一水喷雾冷却等。 (3)控制二次冷却区铸坯受力与变形:在二次冷却区凝固壳的受力与变形是产生裂纹的根源。为此采用多点弯曲矫直、对弧准确、辊缝对中、压缩浇铸技术等。 (4)控制液相穴钢水流动,以促进夹杂物上浮和改善其分布。如结晶器采用电磁搅拌技术、改进浸入式水口设计等。
10.连铸坯缺陷有哪几种类型? 连铸坯表面缺陷是影响连铸机产量和铸坯质量的重要缺陷。据统计,各类缺陷中裂纹占50%。铸坯出现裂纹,重者会导致拉漏或废品,轻者要进行精整。这样既影响铸机生产率,又影响产品质量,因而增加了成本。铸坯内部缺陷影响产品的机械性能、使用性能和使用寿命。(1)表面缺陷:包括表面纵裂纹、横裂纹、网状裂纹、皮下夹渣、皮下气孔、表面凹陷等。 (2)内部缺陷:包括中间裂纹、皮下裂纹、压下裂纹、夹杂、中心裂纹和偏析等。 (3)形状缺陷:方坯菱变(脱方)和板坯鼓肚。
11.连铸坯表面纵裂产生的原因及其防止方法有哪些? 连铸坯表面纵裂纹,会影响轧制产品质量。如长300mm、深2.5mm的纵裂纹在轧制板材上留下1125mm分层缺陷。纵裂纹严重时会造成拉漏和废品。 研究指出:纵裂纹发源于结晶器弯月面初生坯壳厚度的不均匀性。作用于坯壳拉应力超过钢的允许强度,在坯壳薄弱处产生应力集中导致断裂,出结晶器后在二次冷却区扩展。 纵裂产生的原因可归纳为:(1)水口与结晶器不对中而产生偏流冲刷凝固壳。(2)保护渣熔化性能不良、液渣层过厚或过薄导致渣膜厚薄不均,使局部凝固壳过薄。液渣层<10mm,纵裂纹明显增加。(3)结晶器液面波动。液面波动>10㎜,纵裂发生几率30%。(4)钢中S+P含量。钢中S>0.02%,P>0.017%,钢的高温强度和塑性明显降低,发生纵裂趋向增大。(5)钢中C在0.12~0.17%,发生纵裂倾向增加。 防止纵裂发生的措施是:(1)水口与结晶器要对中。(2)结晶器液面波动稳定在±10mm。(3)合适的浸入式水口插入深度。(4)合适的结晶器锥度。(5)结晶器与二次冷却区上部对弧要准。(6)合适的保护渣性能。(7)采用热顶结晶器,即在弯月面区75mm铜板内镶入不锈钢等导热性差的材料,减少了弯月面区热流50~70%,延缓了坯壳收缩,减轻了凹陷,因而也减小了纵裂发生几率。
12.连铸坯表面横裂产生的原因及其防止方法有哪些? 横裂纹是位于铸坯内弧表面振痕的波谷处,通常是隐藏看不见的。经酸洗检查指出,裂纹深度可达7mm,宽度0.2mm。裂纹位于铁素体网状区,而网状区正好是初生奥氏体晶界。且晶界上有细小质点(如AlN)的沉淀。尤其是C—Mn—Nb(V)钢,对裂纹敏感性更强。 横裂产生的原因:(1)振痕太深是横裂纹的发源地。(2)钢中A1、Nb含量增加,促使质点(A1N)在晶界沉淀,诱发横裂纹。(3)铸坯在脆性温度900~700℃矫直。(4)二次冷却太强。 防止横裂发生的措施:(1)结晶器采用高频率(200~400次/分)小振辐(2~4mm)是减少振痕深度的有效办法。(2)二次冷却区采用平稳的弱冷却,使矫直时铸坯表面温度大于900℃。(3)结晶器液面稳定,采用良好润滑性能、粘度较低的保护渣。(4)用火焰清理表面裂纹。
13.连铸坯表面网状裂纹产生的原因及其防止方法有哪些? 这种裂纹在铸坯表面酸洗之后才能发现,深度可达5mm。产生的原因: (1)高温铸坯表面吸收了结晶器的铜,而铜变成液体再沿奥氏体晶界渗透所致。 (2)铸坯表面铁的选择性氧化,使钢中残余元素(如Cu、Sn等)残留在表面沿晶界渗透形成裂纹。 研究表明,裂纹区有Cu、Sn、Sb等元素的富集,钢中Cu含量大于0.1%,裂纹加重;钢中Al含量增加,网状裂纹加重。 防止办法:(1)结晶器表面镀Cr或Ni以增加硬度。(2)合适的二次冷却水量。(3)控制钢中残余元素如Cu<0.2%。(4)控制Mn/S>40。
14.连铸坯角部纵裂纹形成原因及防止措施有哪些? 角部纵裂纹可能位于宽面与窄面交界棱边附近,有的离棱边10~15㎜,有的刚好位于棱边上,严重时会造成漏钢。 形成的原因:对于方形,可能是沿结晶器高度水缝厚度不均匀,造成结晶器角部冷却不良;结晶器锥度太小,结晶器圆角半径太小。对于板坯,可能是由于:(1)窄面支撑不当造成窄面鼓肚。窄面有6~12mm的鼓肚伴随有角部纵裂导致漏钢。(2)锥度不合适。(3)窄面冷却水不足。 改进方法:对于方坯:(1)控制好结晶器几何形状防止变形。(2)合适的圆角半径。(3)装配结晶器时,保持冷却水缝厚度一致,使冷却均匀。对于板坯:1)调整窄面足辊间隙使其向内1~2㎜限制鼓肚。2)合适锥度(1.0%/m)。3)合适冷却水量。4)水口与结晶器对中不要偏流。
- 新闻资讯 -